
Efstratios Gavves

Score-matching & Diffusion
Generative Models

Overview
Introduction to score-matching
Noise conditional score networks
Score-based generation via SDEs
Conditional generation
Diffusion models

https://yang-song.github.io/blog/2021/score/

Tractability v. Flexibility

• In generative modelling there are two opposing forces: tractability and flexibility

• Tractable models are usually analytically computable, thus easy to evaluate and fit

• But they are usually not flexible enough to learn the true data structure

• Flexible models can fit arbitrary structures in data

• But they are usually expensive to evaluate, fit, or sample from

• Diffusion/score-matching models are both tractable and flexible

Overview of generative models

Likelihood-based generative
models Implicit generative models

Likelihood-based generative models

• Typically make strong assumptions to ensure tractability of likelihood

• specifically of the normalising constant in

• For instance, VAEs assume a tractable variational approximation

• Autoregressive models require causal convolutions

• Normalizing Flows require invertibility in the network architecture

Z(x) p(x) =
p̃(x)
Z(x)

Implicit generative models

• Adversarial training for implicit generative models is very unstable

• Adversarial training leads often to mode collapse and reduced sampling variance

• Implicit generative models cannot compute likelihood of a sample, they just sample

Overview of generative models

Likelihood-based generative
models Implicit generative models

Score-based generative models

Tractability v. Flexibility

• In generative modelling there are two opposing forces: tractability and flexibility

• Tractable models are usually analytically computable, thus easy to evaluate and fit

• But they are usually not flexible enough to learn the true data structure

• Flexible models can fit arbitrary structures in data

• But they are usually expensive to evaluate, fit, or sample from

• Diffusion/score-matching models are both tractable and flexible

Energy-based models: a recap

• Alternative to likelihood-based models is energy-based models with likelihood

• For general functions (and network architectures) , it is intractable to maximising
likelihood due to the normalising constant

fθ(x)

pθ(x) =
exp(−fθ(x))

Zθ
, Zθ = ∫ exp(−fθ(x))dx

fθ

max
θ

N

∑
i=1

log pθ(xi)

Score-based models: impressive results

• GAN-like quality and better, while
having the advantages of explicit
probabilistic models

• Explicit likelihood computation

• Representation learning

• State-of-the-art results in
generation, audio synthesis, shape
generation, etc

Song et al., Score-Based Generative Modeling through Stochastic Differential Equations, ICLR 2021 (outstanding paper award)

Score-based generative models

• Score-based models we do not need a tractable normalising constant

• Instead, we can rely on score matching

•

Score function

• The (Stein) score function is the gradient
of the log-probability of a distribution w.r.t.
to the input

• A model , which models the score
function explicitly, is a score-based model

∇xlog p(x)

sθ(x)

sθ(x) ≈ ∇xlog p(x)
The score function of a mixture of two Gaussians

Score-based generative models

• Score-based models we do not need a tractable normalising constant

• But, a score-based model is literally set to output a vector that represents gradient

• We could minimise the Fisher divergence

• But we do not know the “optimal gradient”/“ground truth data score”

• How do we train and backdrop? What do we optimize?

sθ(x) = ∇xlog p(x)
= − ∇x fθ(x) − ∇xlog Zθ

=0

= − ∇x fθ(x)

𝔼p(x)∥∇xlog p(x)−sθ(x)∥2
2

Score matching

• It can be shown* that optimising is equivalent to

up to some regularity conditions

• Still, the trace of the Jacobian is too expensive for large networks and
approximations are needed

𝔼p(x)∥∇xlog p(x)−sθ(x)∥2
2

𝔼pdata(x)[tr(∇xsθ(x))+
1
2

∥sθ(x)∥2
2]

* Song et al., Sliced score matching: A scalable approach to density and score estimation, UAI 2019

Denoising score matching

• Denoising score matching works well for small level of noise

where the data is corrupted to as

• First sample a training example from the training set

• Then add noise to it from a pre-specified distribution

• You can repeat the process and average with Monte Carlo simulation (or do it once)

1
2

𝔼qσ(x̃|x)pdata(x)[sθ(x̃) − ∇x̃log qσ(x̃ |x)
2

2]
x x̃ qσ(x̃) = ∫ qσ(x̃ |x)pdata(x)dx

* Vincent, A connection between score matching and denoising auto encoders, Neural Computation, 2011

Sliced score matching

• Slided score matching, which uses random projections to approximate the trace

where is a simple distribution of random vectors like multivariate Gaussian

• First sample a few vectors that define the random projections

• Then compute using forward-mode auto-differentiation

• Works on the original, unperturbed data distribution

• But it requires 4x the compute due to the extra auto-differentiation

𝔼p(v)𝔼pdata[v⊤ ∇xsθ(x)v+
1
2

∥sθ∥2
2]

p(v)

v

v⊤ ∇xsθ(x)v

* Song et al., Sliced score matching: A scalable approach to density and score estimation, UAI 2019

Score matching: advantages

• We can train with score matching directly with SGD like maximising log-likelihood

• We have no constraints on the form of as we do not require to be the
score function of a normalised distribution

• We just compare our neural network output with the ground-truth data score

• The only requirement is that is a vector valued function with the same input
and output dimensionality

fθ(x) sθ(x)

sθ(x)

Sampling using Langevin dynamics

• During training we do not involve an explicit “sampling” mechanism

• After training the score-based model, we can sample with Langevin dynamics

• Langevin dynamics are an MCMC procedure to sample from distribution using
only the score function

• Where for we sample from an arbitrary prior distribution

• And is a sample from a standard Gaussian

p(x)
∇xlog p(x)

xt+1 ← xt + ϵ∇xlog p(xt) + 2ϵzt, t = 0,…, K, zt ∼ 𝒩(0, I)

t = 0 x0 ∼ π(x)

Sampling using Langevin dynamics

• For and we sample from (under
conditions)

• Importantly, this is an iterative sampling procedure
for which we only need to score function

• So, we can produce samples by iteratively computing
 via score function

xt+1 ← xt + ϵ∇xlog p(xt) + 2ϵzt, t = 0,…, K

ϵ → 0 K → ∞ p(x)

xt+1 sθ(x) ≈ ∇xlog p(x)

Langevin Dynamics

• Originally developed to model molecular dynamics

• You can think of Langevin dynamics as something similar to stochastic gradient
descent, only now we do not necessarily optimise for parameters

• Given your current position we move to the direction of the gradient of the
score function (log-likehood function) , corrupted with some noise ,
scaled by (like ‘learning rate’) annealed over time

• A very nice work making the connection to Bayesian Learning*

xt+1 ← xt + ϵ∇xlog p(xt) + 2ϵzt, t = 0,…, K, zt ∼ 𝒩(0, I)

xt ∇
log p(xt) zt

ϵ

‘Bayesian Learning via Stochastic Gradient Langevin Dynamics’, M. Welling, Y. W. Teh

https://www.stats.ox.ac.uk/~teh/research/compstats/WelTeh2011a.pdf

Low data density regions

• Minimising Fisher divergence means placing more emphasis where is high

• Even harder in high-dimensional spaces that are mostly empty

• The Monte Carlo sample estimates will not be accurate enough

p(x)

𝔼p(x)[∥∇xlog p(x) − sθ(x)∥2
2] = ∫ p(x)∥∇xlog p(x) − sθ(x)∥2

2dx

Slow mixing of Langevin dynamics

• When the true density has two (or multiple) modes separated by a low-density
region, it is hard for Langevin dynamics to visit them in a reasonable time

• That makes sense: the ‘jumps’ local around current location of score function
and the added noise is unlikely to be large enough to push to far

xt+1 ← xt+ϵ∇xlog p(xt)+ 2ϵzt, t = 0,…, K, zt ∼ 𝒩(0, I)

From ‘Generative Modelling by
Estimating Gradients of the Data
Distribution’, by Song and Ermon

Naive score-based ignores low-density regions

• In the naive case of training score-based methods we have innaccurate score
function estimation

• And we have slow mixing of Langevin dynamics

• As a result, the Langevin chain will start from a low density region and get stuck

Noise perturbations

• Perturb data with noise Noised up data fill up the “empty” space

• Too much noise will over-corrupt the data, however, so caution is needed

• Add noise from with more and more variance: ,
specifically by marginalising out the noise variable

←

𝒩(0,σt) σ1 < σ2 < … < σL

pσt
(x) = ∫ p(x, y)dy = ∫ p(y)p(x |y)dy

= ∫ p(y)𝒩(x |y, σ2
t I)dy

Noise-conditional Score-based Models

• Learn the score-matching function on the perturbed data points

Multiple scales of Gaussian noise to perturb data (above) so that to
learn the respective score-matching function (below).

Noise-Conditional Score-based Models

• The final objective is a weighted sum of Fisher divergences

where is a weighting function, typical choice

∑
t

λ(t)𝔼pσt(x)[∥∇xlog pσt
(x) − sθ(x, t])∥]

λ(t) λ(t) = σ2
t

Noising-up real images

Annealed Langeving Dynamics

• Like before, but we start sampling from larger
noise, which we gradually decrease

Practical tips

• Pick in geometric progression where is comparable to max distance between
samples in the training set

• is typical in the order of hundreds or thousands

• Parameterize the score-based model with a U-Net with skip connections

• At test time use exponential moving averages on the weights

σt σL

L

Score-based models with SDEs

• Adding noise is important, but why ‘hardcode’?

• By generalising with infinite noise scales, we can

• get higher quality samples

• exact log-likelihood computation

• controllable generation with inverse problem solving

• A stochastic process defines a process of generating infinite noise scales

Stochastic processes via SDEs

• A stochastic process can be defined in terms of (solution
of) a stochastic differential equation

• The change in our random variable is governed by
a function of the variable itself and time (drift
coefficient) plus stochastic perturbation (noise)
whose scale is a function of time (diffusion
coefficient)

• , is Brownian motion,
and is infinitesimal white noise

dx = f(x, t)dt+g(t)dw

f(⋅ , t) : ℝd → ℝd, g ∈ ℝ w
dw

Solutions to SDEs

• Solutions to the SDEs are stochastic random variables

• These random variables are stochastic trajectories over time

• The probability density of is (analogous to for the discrete case)

• means the distribution in the data space, i.e.,

• is the distribution after all the noising up for period until we end up to our
prior distribution for our data generation process, i.e.,

dx = f(x, t)dt+g(t)dw

{x(t)}t∈[0,T]

x(t) pt(x) pσi
(x)

p0(x) p0(x) = p(x)

pT(x) T
pT(x) = π(x)

Perturbing data with noise from SDEs

• This SDE is the generalisation of the finite scaling

• Earlier we were perturbing according to a geometric progression of scales

• Now, we perturb with noise controlled by the SDE

• We select manually which SDE to model the process with

• If we were to select , we would add Gaussian noise with a scale that
grows exponentially with time

σ0, . . . , σL

dx = etdw dw et

From data to SDE noise

• Let’s ‘imagine’ how the process works

• We can always start from any image sample from

• … and gradually add noise until it is a sample standard Gaussian distribution

• The point is, can we learn to do the reverse?

x pdata(x)

π(x)

From reverse SDE noise to data

• For any SDE there is a reverse SDE, which corresponds to the reverse trajectories

• That is, for the reverse SDE we need precisely the score function of

dx = [f(x, t) − g2(t)∇xlog pt(x)]dt + g(t)dw

pt(x)

Learning the reverse SDE

• Once we have the neural network approximating the score function

• We start from the prior distribution for an initial sample

• To solve the reverse SDE, that is obtain all

• So that our final model approximates well the true data distribution,

• If we set , it can be shown that

• Assuming perfect score-matching, we can approximate the data distribution as well as we match
the prior distribution

dx = [f(x, t) − g2(t)∇xlog pt(x)]dt + g(t)dw

π(x) x(T) ∼ π(x)

X(t), ∀t ∈ (T,0]

pθ pθ ≈ p0

λ(t) = g2(t)

KL(p0(x)∥pθ(x))) ≤ 𝔼t∼𝒰(0,T)𝔼x∼pt(x)[∇xlog pt(x) − sθ(x)
2

2
]+KL(pT(x)∥π(x)))

Solving the reverse SDE

• Once we have trained the score-matching function, we can solve the reverse SDE
from the prior all the way to our data distribution to generate new data

• We can use any numerical solver, e.g., the Euler-Maruyama, for a small negative

• With better sampling procedures for SDEs and better architectures, one gets state-
of-the-art in generated samples

π p0

Δt

Δx ← [f(x, t) − g2(t)sθ(x, t)]Δt + g(t) |Δt | zt, zt ∼ 𝒩(0,I)

x ← x + Δx
t ← t + Δt

Time-dependent score-matching

• Train a neural network for score-matching that depends on time

where typically

• Randomly sample time steps

• Then sample data from training set

• Then optimise your score matching approximation

𝔼t∈𝒰(0,T)𝔼pt(x)[λ(t) ∇xlog pt(x) − sθ(x)
2

2]
λ(t) ∝ 1/𝔼[∥∇x(t)log p(x(t) |x(0))∥2

2]

Qualitative examples

Probability flow ODE

• With Langevin MCMC samplers and SDE solvers we can’t get exact log-likelihoods

• We can convert the SDE to a corresponding ODE without changing the marginal
distributions , name the probability flow ODE

• Solving the ODE, we can get the exact log-likelihood

{pt(x)}t∈[0,T]

dx = [f(x, t) − g2(t)∇xlog pt(x)]dt

Diffusion Probabilistic Models

• Concurrently, another very similar class of models appeared: diffusion models

• Diffusion models also define a forward and reverse diffusion process, where
corresponds to the data distribution, and a unit-Gaussian distribution

t = 0
t = T

Diffusion probabilistic models, Sohl-Dickstein et al., 2015
Denoising diffusion probabilistic models, Ho et al., 2020
Diffusion models beat GANs on image synthesis, 2021
https://lilianweng.github.io/posts/2021-07-11-diffusion-models/

Forward diffusion process

• In forward diffusion we add small Gaussian noise to our data till it looks like isotropic Gaussian

• We can define the conditional distribution at any time step w.r.t. step

• For this we use that when merging two Gaussians, we get another Gaussian with variance

q(xt |xt−1) = 𝒩(xt; 1 − βtxt−1, βtI), q(x1:T |x0) =
T

∏
t=1

q(xt |xt−1)

t t = 0
xt = atxt−1 + 1 − atzt−1 , where zt−1, zt−2, . . . ∼ 𝒩(0,1)

= atat−1xt−2 + 1 − atat−1z̄t−2 , where z̄t−2 merges two Guassians
= . . .
= ātx0 + 1 − ātz̄

q(xt |x0) = 𝒩(xt; ātx0, 1 − ātI)
σ2

1 + σ2
2

https://en.wikipedia.org/wiki/Sum_of_normally_distributed_random_variables

Reverse diffusion process

• The reverse diffusion process can be efficiently parameterised to combine with
variational inference

• Since we have Gaussian distributions the KL terms can be computed in closed form

• does not depend any parameters and it can be dropped

• depends on the final decoder output

LVLB = LT + LT−1 + … + L0

where LT = DKL(q(xT |x0)∥pθ(xT))
Lt = DKL(q(xt |xt+1, x0)∥pθ(xt |xt+1)) for 1 ≤ t ≤ T − 1
L0 = − log pθ(x0 |x1)

LT

L0

Parameterising Lt

• By smart parameterisation of the intermediate Gaussians, learning boils down to
minimising

Lsimple
t = 𝔼x0,ϵt[ϵt − ϵθ(ātx0 + 1 − ātϵt, t)

2

2]

Example trajectories

https://lilianweng.github.io/posts/2021-07-11-diffusion-models/

Qualitative results

Take-home message

• Diffusion/score-matching models are both tractable and flexible

• However, they are still quite slow to sample from compared to GANs

• The reason is that they require very long chains of time steps up to

• Great opportunities for learning the data structure effectively and efficiently enough

• Promising results in modelling inverse problems

T = 1,000

