Score-matching & Diffusion
Generative Models
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Introduction to score-matching
Noise conditional score networks
Score-based generation via SDEs
Conditional generation

Diffusion models

https://yang-song.github.io/blog/2021/score/




Tractability v. Flexibility

In generative modelling there are two opposing forces: tractability and flexibility
Tractable models are usually analytically computable, thus easy to evaluate and fit
But they are usually not flexible enough to learn the true data structure

Flexible models can fit arbitrary structures in data

But they are usually expensive to evaluate, fit, or sample from

Diffusion/score-matching models are both tractable and flexible



Overview of generative models

Likelihood-based generative
models

Implicit generative models




Likelihood-based generative models

Typically make strong assumptions to ensure tractability of likelihood
p(x)
Z(X)

For instance, VAEs assume a tractable variational approximation

. specifically of the normalising constant Z(x) in p(x) =

Autoregressive models require causal convolutions

Normalizing Flows require invertibility in the network architecture
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Implicit generative models

* Adversarial training for implicit generative models is very unstable
* Adversarial training leads often to mode collapse and reduced sampling variance

* Implicit generative models cannot compute likelihood of a sample, they just sample

Random Noise
€ ~ PlE
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Likelihood-based generative
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Score-based generative models




Tractability v. Flexibility

In generative modelling there are two opposing forces: tractability and flexibility
Tractable models are usually analytically computable, thus easy to evaluate and fit
But they are usually not flexible enough to learn the true data structure

Flexible models can fit arbitrary structures in data

But they are usually expensive to evaluate, fit, or sample from

Diffusion/score-matching models are both tractable and flexible



Energy-based models: arecap

» Alternative to likelihood-based models is energy-based models f,(x) with likelihood

Pox) = wa Ly = JGXP(—fe(x))dx
0

» For general functions (and network architectures) f, it is intractable to maximising
likelihood due to the normalising constant

N
max ) log py(x)
=1



Score-based models: impressive results

* GAN-like quality and better, while
having the advantages of explicit
probabilistic models

 Explicit likelihood computation
* Representation learning

» State-of-the-art results in
generation, audio synthesis, shape
generation, etc

Song et al., Score-Based Generative Modeling through Stochastic Differential Equations, ICLR 2021 (outstanding paper award)



Score-based generative models

* Score-based models we do not need a tractable normalising constant

* Instead, we can rely on score matching



Score function

* The (Stein) score function is the gradient =)l
of the log-probability of a distribution w.r.t. § } =AMty o
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The score function of a mixture of two Gaussians



Score-based generative models

Score-based models we do not need a tractable normalising constant
sg(x) = V,log p(x)
=—V_ fyx)— V. logZ,=—-V_f,(x)
—
But, a score-based model is literally set to output a vector that represents gradient

We could minimise the Fisher divergence

_p(x) H Vxlogp(x)_sé’(x) H%

But we do not know the “optimal gradient”/“ground truth data score”

How do we train and backdrop? What do we optimize?



Score matching

+ It can be shown’ that optimising ||V, 1og p(x)—sy(x) H% is equivalent to

1
2 ltr( V,00)) 5 llsyx) ugl

up to some regularity conditions

» Still, the trace of the Jacobian is too expensive for large networks and
approximations are needed

* Song et al., Sliced score matching: A scalable approach to density and score estimation, UAI 2019



Denoising score matching

* Denoising score matching works well for small level of noise

1

;
e pdam(x)[ sp(X) — Vglog (X[ x) |2]

where the data X is corrupted to X as g (X) = J'qa(i | X)p .. (X)dX

* First sample a training example from the training set
* Then to it from a pre-specified distribution

* You can repeat the process and average with Monte Carlo simulation (or do it once)

*Vincent, A connection between score matching and denoising auto encoders, Neural Computation, 2011



Sliced score matching

» Slided score matching, which uses random projections to approximate the trace

- y
=p(v) pdata[ +EHS9H2]

where p(v) is a simple distribution of random vectors like multivariate Gaussian
 First sample a few vectors v that define the random projections

* Then compute using forward-mode auto-differentiation

* Works on the original, unperturbed data distribution

* But it requires 4x the compute due to the extra auto-differentiation

* Song et al., Sliced score matching: A scalable approach to density and score estimation, UAI 2019



Score matching: advantages

We can train with score matching directly with SGD like maximising log-likelihood

We have no constraints on the form of f,(x) as we do not require sy(x) to be the
score function of a normalised distribution

We just compare our neural network output with the ground-truth data score

The only requirement is that sy(x) is a vector valued function with the same input
and output dimensionality



Sampling using Langevin dynamics

During training we do not involve an explicit “sampling” mechanism

After training the score-based model, we can sample with Langevin dynamics

Langevin dynamics are an MCMC procedure to sample from distribution p(x) using

only the score function V log p(x)
X, < X +eV,/]ogpkx)++2z, t=0,...,K, z,~ N(0,])

Where for t = 0 we sample from an arbitrary prior distribution X, ~ 7(x)

And is a sample from a standard Gaussian



Sampling using Langevin dynamics
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X1 < X+ eVidogp(x) + V2ez, =0, K BTN LS

* Fore — 0 and K = oo we sample from p(x) (under i :t; i: RO P\ o o e
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* Importantly, this is an iterative sampling procedure I R AN f;; ; : : :
for which we only need to score function e NN NN N e = P2

* So, we can produce samples by iteratively computing =~ 0 T o j{j §
X, 1 via score function sy(x) ~ V log p(x) I‘ RSN ::‘: I\f\\



Langevin Dynamics

X, < X +eV,logpx,)++/2€z, t=0,....K, z, ~ V(0,])
Originally developed to model molecular dynamics

You can think of Langevin dynamics as something similar to stochastic gradient
descent, only now we do not necessarily optimise for parameters

Given your current position X, we move to the direction of the gradient V of the
score function (log-likehood function) log p(x,), corrupted with some noise z,
scaled by € (like ‘learning rate’) annealed over time

A very nice work making the connection to Bayesian Learning*

‘Bayesian Learning via Stochastic Gradient Langevin Dynamics’, M. Welling, Y. W. Teh



https://www.stats.ox.ac.uk/~teh/research/compstats/WelTeh2011a.pdf

Low data density regions

» Minimising Fisher divergence means placing more emphasis where p(x) is high

= (%) [HVxlogP(X) — SQ(X)”%] = Jp(X)\\VXIng(X) — SQ(X)H%dX

* Even harder in high-dimensional spaces that are mostly empty

* The Monte Carlo sample estimates will not be accurate enough
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Slow mixing of Langevin dynamics

X, | < X+ X,)+v/ 2¢z, t=0,....K, z, ~ NV(0,1)

* When the true density has two (or multiple) modes separated by a low-density
region, it is hard for Langevin dynamics to visit them in a reasonable time

 That makes sense: the "local around current location of score function
and the added noise is unlikely to be large enough to push to far
Z ‘ 2 Z From ‘Generative Modelling by
. . , Estimating Gradients of the Data
-4 -4 4 Distribution’, by Song and Ermon
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Figure 3: Samples from a mixture of Gaussian with different methods. (a) Exact sampling. (b)
Sampling using Langevin dynamics with the exact scores. (c) Sampling using annealed Langevin
dynamics with the exact scores. Clearly Langevin dynamics estimate the relative weights between
the two modes incorrectly, while annealed Langevin dynamics recover the relative weights faithfully.



Naive score-based ignores low-density regions

* In the naive case of training score-based methods we have innaccurate score
function estimation

* And we have slow mixing of Langevin dynamics

* As a result, the Langevin chain will start from a low density region and get stuck
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Noise perturbations

* Perturb data with noise « Noised up data fill up the “empty” space

* Too much noise will over-corrupt the data, however, so caution is needed

» Add noise from 4/ (0,0,) with more and more variance: 6; < 0, < ... < 07,

specifically by marginalising out the noise variable

Ps(X) = Jp(x, y)dy = Jp(y)p(x | y)dy

= Jp(y)/l/ (x|y, o/ Ddy

Perturbed density

Perturbed scores
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Noise-conditional Score-based Models

* Learn the score-matching function on the perturbed data points

01 < 02 < 03
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Multiple scales of Gaussian noise to perturb data (above) so that to
learn the respective score-matching function (below).
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Annealed Langeving Dynamics

 Like before, but we start sampling from larger
noise, which we gradually decrease

Algorithm 1 Annealed Langevin dynamics.

Require: {o;};,,¢,T.
1: Initialize xg
2: for: <+ 1to L do

3. a;+€-07/0% > o; is the step size.
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Practical tips

Pick o, in geometric progression where o; is comparable to max distance between
samples in the training set

L is typical in the order of hundreds or thousands
Parameterize the score-based model with a U-Net with skip connections

At test time use exponential moving averages on the weights



Score-based models with SDEs

* Adding noise is important, but why ‘hardcode’?
* By generalising with infinite noise scales, we can
» get higher quality samples
* exact log-likelihood computation

» controllable generation with inverse problem solving

* A stochastic process defines a process of generating infinite noise scales



Stochastic processes via SDEs

* A stochastic process can be defined in terms of (solution
of) a stochastic differential equation
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a function of the variable itself and time (drift
coefficient) plus

whose scale is a function of time (diffusion
coefficient)

e« f(-,1):R?Y - RY ¢ € R, wis Brownian motion,
and dw is infinitesimal white noise



Solutions to SDEs

dx = f(x, r)dt+
 Solutions to the SDEs are stochastic random variables {x(7)} /€[0T
* These random variables are stochastic trajectories over time

 The probability density of x(7) is p,(X) (analogous to pai(x) for the discrete case)

* po(X) means the distribution in the data space, i.e., py(X) = p(x)

* pr(X) is the distribution after all the noising up for period T until we end up to our
prior distribution for our data generation process, i.e., p(X) = m(X)



Perturbing data with noise from SDEs

This SDE is the generalisation of the finite scaling o, . . ., 07
Earlier we were perturbing according to a geometric progression of scales
Now, we perturb with noise controlled by the SDE

We select manually which SDE to model the process with

If we were to select dx = e’dw, we would add Gaussian noise dw with a scale ¢’ that
ogrows exponentially with time



From data to SDE noise

Let’s ‘imagine’ how the process works
We can always start from any image sample x from p, . (x)

... and gradually add noise until it is a sample standard Gaussian distribution 7(x)

—— Stochastic process




From reverse SDE noise to data

* For any SDE there is a reverse SDE, which corresponds to the reverse trajectories

dx =

lf(x, N — g%(t) V. log pt(x)] dt + g(r)dw

* That is, for the reverse SDE we need precisely the score function of p(Xx)
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Learning the reverse SDE

dx = _f(X, f) — g*(¢) V_log pt(x)_ dt + g(¢)dw
Once we have the neural network approximating the score function
We start from the prior distribution z(X) for an initial sample xX(7") ~ 7m(X)
To solve the reverse SDE, that is obtain all X(7), Vr € (7,0]
So that our final model p, approximates well the true data distribution, py = p,

If we set A(f) = g%(?), it can be shown that

] oh
KL 1Pa3)) < B0 E o ||| Vidog pi(X) —SQ(X)”z +

Assuming perfect score-matching, we can approximate the data distribution as well as we match
the prior distribution



Solving the reverse SDE

* Once we have trained the score-matching function, we can solve the reverse SDE
from the prior 7 all the way to our data distribution p, to generate new data

* We can use any numerical solver, e.g., the Euler-Maruyama, for a small negative At

AX — lf(x, N — g2()sy(x, r)] At + g(0\/TAL 2,0 2, ~ N(O.])

X < X + AX
t — t+ At
» With better sampling procedures for SDEs and better architectures, one gets state-
of-the-art in generated samples




Time-dependent score-matching

* Train a neural network for score-matching that depends on time

2
e l/l(t) V. log p,(X) — s4(X) |2]

where typically A(7) « 1/E |||V, log p(x(2) | x(0))||3]
* Randomly sample time steps

* Then sample data from training set

* Then optimise your score matching approximation



ualitative examples




Probability flow ODE

* With Langevin MCMC samplers and SDE solvers we can’t get exact log-likelihoods

* We can convert the SDE to a corresponding ODE without changing the marginal
distributions {p,(X) },c10.71, Name the probability tlow ODE

dx = |(x,1) - g%(1) Vylog p,(0 | dt

* Solving the ODE, we can get the exact log-likelihood

Forward SDE everse SDE Data

ata
@ dz = f(z,t)dt + g(t)dw )@7 dz = [f(;v, t) — 92 (t)V, logpt(m)] dt + g(t)dw




Diffusion Probabilistic Models

* Concurrently, another very similar class of models appeared: diffusion models

 Diffusion models also define a forward and reverse diffusion process, where t = 0
corresponds to the data distribution, and r = T a unit-Gaussian distribution

Figure 2: The directed graphical model considered in this work.

Diffusion probabilistic models, Sohl-Dickstein et al., 2015
Denoising diffusion probabilistic models, Ho et al., 2020
Diffusion models beat GANs on image synthesis, 2021
https:/lilianweng.github.io/posts/2021-07-11-diffusion-models/



Forward diffusion process

* In forward diffusion we add small Gaussian noise to our data till it looks like isotropic Gaussian

T
q(X,|X,_1) = ‘/V(Xt;\/l — PX1, P, q(X.p|Xo) = HQ(Xt‘Xt—l)
=1

* We can define the conditional distribution at any time step ¢ w.r.t. step t = 0

Xt — \/atXt_l + \/1 — CltZt_l ’ Whel‘e Zt—l’ Zt_z, 0o Y ;/’/(0,1)
= \/ ad,_1X,_»+ \/ | —aa,_z,, , where Z,_, merges two Guassians

q(x,1%g) = N (X;34/d,X,4/1 — a,I)
)

* For this we use that when merging two Gaussians, we get another Gaussian with variance 012 + 05



https://en.wikipedia.org/wiki/Sum_of_normally_distributed_random_variables

Reverse diffusion process

The reverse diffusion process can be efficiently parameterised to combine with
variational inference

where L, = DKL(Q (X7] XO)HPH(XT))
L = DKL(Q(Xt‘Xt_l_l,XO)Hpe(Xt‘Xt_|_1)> forl <r<T-1

Ly = —log py(xo | X;)
Since we have Gaussian distributions the KL terms can be computed in closed form

Ldoes not depend any parameters and it can be dropped

L, depends on the final decoder output



Parameterising L,

* By smart parameterisation of the intermediate Gaussians, learning boils down to
minimising

simple
[Simple _ -XO,Q[

2
e, —€y(\/axy++/1—ae,1) ]

2
Algorithm 1 Training Algorithm 2 Sampling
1 repeat 1: x7 ~ N(0,I)
2: %o ~ q(Xo) 2: fort=T,...,1do
i' L~ [./J\';l(l(f;OI]‘:I)n({l, oy T'}) 3: z~N(0,I)ift > 1,elsez=0
. E€Erv ; —
5. Take gradient descent step on 4 X1 = \/z—t (xt \}ﬁeé’ (Xtat)) T OtZ
Vo He—ee(\/&txo + 1 —&te,t)”2 5: end for

6: until converged 6: return xo




Example trajectories

2
The forward trajectory
Q(XO:T) Of
-2
2
The reverse trajectory
Po (xO:T) Of
-2

The drifting term
po(X¢,t) — Xy

————— bAAAAD )~ ~rrorrs

Fig. 3. An example of training a diffusion model for modeling a 2D swiss roll

data. (Image source: Sohl-Dickstein et al.,

https:/lilianweng.github.io/posts/2021-07-11-diffusion-models/
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Qualitative results
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Figure 8: Interpolations of CelebA-HQ 256x256 images with 500 timesteps of diffusion.
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Take-home message

Diffusion/score-matching models are both tractable and flexible

However, they are still quite slow to sample from compared to GANs

The reason is that they require very long chains of time steps up to 7 = 1,000
Great opportunities for learning the data structure effectively and efficiently enough

Promising results in modelling inverse problems



