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Tractability v. Flexibility

• In generative modelling there are two opposing forces: tractability and flexibility 

• Tractable models are usually analytically computable, thus easy to evaluate and fit 

• But they are usually not flexible enough to learn the true data structure 

• Flexible models can fit arbitrary structures in data 

• But they are usually expensive to evaluate, fit, or sample from 

• Diffusion/score-matching models are both tractable and flexible



Overview of generative models

Likelihood-based generative 
models Implicit generative models



Likelihood-based generative models

• Typically make strong assumptions to ensure tractability of likelihood  

• specifically of the normalising constant  in  

• For instance, VAEs assume a tractable variational approximation  

• Autoregressive models require causal convolutions 

• Normalizing Flows require invertibility in the network architecture

Z(x) p(x) =
p̃(x)
Z(x)



Implicit generative models

• Adversarial training for implicit generative models is very unstable 

• Adversarial training leads often to mode collapse and reduced sampling variance 

• Implicit generative models cannot compute likelihood of a sample, they just sample
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Score-based generative models



Tractability v. Flexibility

• In generative modelling there are two opposing forces: tractability and flexibility 

• Tractable models are usually analytically computable, thus easy to evaluate and fit 

• But they are usually not flexible enough to learn the true data structure 

• Flexible models can fit arbitrary structures in data 

• But they are usually expensive to evaluate, fit, or sample from 

• Diffusion/score-matching models are both tractable and flexible



Energy-based models: a recap

• Alternative to likelihood-based models is energy-based models  with likelihood 

 

• For general functions (and network architectures) , it is intractable to maximising 
likelihood due to the normalising constant 

 

fθ(x)

pθ(x) =
exp(−fθ(x))

Zθ
, Zθ = ∫ exp(−fθ(x))dx

fθ

max
θ

N

∑
i=1

log pθ(xi)



Score-based models: impressive results

• GAN-like quality and better, while 
having the advantages of explicit 
probabilistic models 

• Explicit likelihood computation 

• Representation learning 

• State-of-the-art results in 
generation, audio synthesis, shape 
generation, etc

Song et al., Score-Based Generative Modeling through Stochastic Differential Equations, ICLR 2021 (outstanding paper award)



Score-based generative models

• Score-based models we do not need a tractable normalising constant 

• Instead, we can rely on score matching 

•



Score function

• The (Stein) score function is the gradient 
of the log-probability of a distribution w.r.t. 
to the input 

 

• A model , which models the score 
function explicitly, is a score-based model 

∇xlog p(x)

sθ(x)

sθ(x) ≈ ∇xlog p(x)
The score function of a mixture of two Gaussians



Score-based generative models

• Score-based models we do not need a tractable normalising constant 

 

• But, a score-based model is literally set to output a vector that represents gradient 

• We could minimise the Fisher divergence 

 

• But we do not know the “optimal gradient”/“ground truth data score” 

• How do we train and backdrop? What do we optimize?

sθ(x) = ∇xlog p(x)
= − ∇x fθ(x) − ∇xlog Zθ

=0

= − ∇x fθ(x)

𝔼p(x)∥∇xlog p(x)−sθ(x)∥2
2



Score matching

• It can be shown* that optimising  is equivalent to 

 

up to some regularity conditions 

• Still, the trace of the Jacobian is too expensive for large networks and 
approximations are needed

𝔼p(x)∥∇xlog p(x)−sθ(x)∥2
2

𝔼pdata(x)[tr(∇xsθ(x))+
1
2

∥sθ(x)∥2
2]

* Song et al., Sliced score matching: A scalable approach to density and score estimation, UAI 2019



Denoising score matching

• Denoising score matching works well for small level of noise 

 

where the data  is corrupted to  as  

• First sample a training example from the training set 

• Then add noise to it from a pre-specified distribution 

• You can repeat the process and average with Monte Carlo simulation (or do it once)

1
2

𝔼qσ(x̃|x)pdata(x)[ sθ(x̃) − ∇x̃log qσ(x̃ |x)
2

2]
x x̃ qσ(x̃) = ∫ qσ(x̃ |x)pdata(x)dx

* Vincent, A connection between score matching and denoising auto encoders, Neural Computation, 2011



Sliced score matching

• Slided score matching, which uses random projections to approximate the trace 

 

where  is a simple distribution of random vectors like multivariate Gaussian 

• First sample a few vectors  that define the random projections 

• Then compute  using forward-mode auto-differentiation 

• Works on the original, unperturbed data distribution  

• But it requires 4x the compute due to the extra auto-differentiation

𝔼p(v)𝔼pdata[v⊤ ∇xsθ(x)v+
1
2

∥sθ∥2
2]

p(v)

v

v⊤ ∇xsθ(x)v

* Song et al., Sliced score matching: A scalable approach to density and score estimation, UAI 2019



Score matching: advantages

• We can train with score matching directly with SGD like maximising log-likelihood 

• We have no constraints on the form of  as we do not require  to be the 
score function of a normalised distribution 

• We just compare our neural network output with the ground-truth data score 

• The only requirement is that  is a vector valued function with the same input 
and output dimensionality

fθ(x) sθ(x)

sθ(x)



Sampling using Langevin dynamics

• During training we do not involve an explicit “sampling” mechanism 

• After training the score-based model, we can sample with Langevin dynamics 

• Langevin dynamics are an MCMC procedure to sample from distribution  using 
only the score function  

 

• Where for  we sample from an arbitrary prior distribution  

• And is a sample from a standard Gaussian 

p(x)
∇xlog p(x)

xt+1 ← xt + ϵ∇xlog p(xt) + 2ϵzt, t = 0,…, K, zt ∼ 𝒩(0, I)

t = 0 x0 ∼ π(x)



Sampling using Langevin dynamics

 

• For  and  we sample from  (under 
conditions) 

• Importantly, this is an iterative sampling procedure 
for which we only need to score function 

• So, we can produce samples by iteratively computing 
 via score function 

xt+1 ← xt + ϵ∇xlog p(xt) + 2ϵzt, t = 0,…, K

ϵ → 0 K → ∞ p(x)

xt+1 sθ(x) ≈ ∇xlog p(x)



Langevin Dynamics

 

• Originally developed to model molecular dynamics  

• You can think of Langevin dynamics as something similar to stochastic gradient 
descent, only now we do not necessarily optimise for parameters 

• Given your current position  we move to the direction of the gradient  of the 
score function (log-likehood function) , corrupted with some noise , 
scaled by  (like ‘learning rate’) annealed over time 

• A very nice work making the connection to Bayesian Learning*

xt+1 ← xt + ϵ∇xlog p(xt) + 2ϵzt, t = 0,…, K, zt ∼ 𝒩(0, I)

xt ∇
log p(xt) zt

ϵ

‘Bayesian Learning via Stochastic Gradient Langevin Dynamics’, M. Welling, Y. W. Teh

https://www.stats.ox.ac.uk/~teh/research/compstats/WelTeh2011a.pdf


Low data density regions

• Minimising Fisher divergence means placing more emphasis where  is high 

 

• Even harder in high-dimensional spaces that are mostly empty 

• The Monte Carlo sample estimates will not be accurate enough

p(x)

𝔼p(x)[∥∇xlog p(x) − sθ(x)∥2
2] = ∫ p(x)∥∇xlog p(x) − sθ(x)∥2

2dx



Slow mixing of Langevin dynamics

 

• When the true density has two (or multiple) modes separated by a low-density 
region, it is hard for Langevin dynamics to visit them in a reasonable time 

• That makes sense: the ‘jumps’ local around current location of score function 
and the added noise is unlikely to be large enough to push to far

xt+1 ← xt+ϵ∇xlog p(xt)+ 2ϵzt, t = 0,…, K, zt ∼ 𝒩(0, I)

From ‘Generative Modelling by 
Estimating Gradients of the Data 
Distribution’, by Song and Ermon



Naive score-based ignores low-density regions

• In the naive case of training score-based methods we have innaccurate score 
function estimation 

• And we have slow mixing of Langevin dynamics 

• As a result, the Langevin chain will start from a low density region and get stuck



Noise perturbations

• Perturb data with noise  Noised up data fill up the “empty” space 

• Too much noise will over-corrupt the data, however, so caution is needed 

• Add noise from  with more and more variance: , 
specifically by marginalising out the noise variable 

←

𝒩(0,σt) σ1 < σ2 < … < σL

pσt
(x) = ∫ p(x, y)dy = ∫ p(y)p(x |y)dy

= ∫ p(y)𝒩(x |y, σ2
t I)dy



Noise-conditional Score-based Models

• Learn the score-matching function on the perturbed data points

Multiple scales of Gaussian noise to perturb data (above) so that to 
learn the respective score-matching function (below).



Noise-Conditional Score-based Models

• The final objective is a weighted sum of Fisher divergences 

 

where  is a weighting function, typical choice 

∑
t

λ(t)𝔼pσt(x)[∥∇xlog pσt
(x) − sθ(x, t])∥]

λ(t) λ(t) = σ2
t

Noising-up real images



Annealed Langeving Dynamics

• Like before, but we start sampling from larger 
noise, which we gradually decrease



Practical tips

• Pick  in geometric progression where  is comparable to max distance between 
samples in the training set 

•  is typical in the order of hundreds or thousands 

• Parameterize the score-based model with a U-Net with skip connections 

• At test time use exponential moving averages on the weights

σt σL

L



Score-based models with SDEs

• Adding noise is important, but why ‘hardcode’? 

• By generalising with infinite noise scales, we can 

• get higher quality samples 

• exact log-likelihood computation 

• controllable generation with inverse problem solving 

• A stochastic process defines a process of generating infinite noise scales



Stochastic processes via SDEs

• A stochastic process can be defined in terms of (solution 
of) a stochastic differential equation 

 

• The change in our random variable is governed by 
a function of the variable itself and time (drift 
coefficient) plus stochastic perturbation (noise) 
whose scale is a function of time (diffusion 
coefficient) 

• ,  is Brownian motion, 
and  is infinitesimal white noise

dx = f(x, t)dt+g(t)dw

f( ⋅ , t) : ℝd → ℝd, g ∈ ℝ w
dw



Solutions to SDEs

 

• Solutions to the SDEs are stochastic random variables  

• These random variables are stochastic trajectories over time 

• The probability density of  is  (analogous to  for the discrete case) 

•  means the distribution in the data space, i.e.,  

•  is the distribution after all the noising up for period  until we end up to our 
prior distribution for our data generation process, i.e., 

dx = f(x, t)dt+g(t)dw

{x(t)}t∈[0,T]

x(t) pt(x) pσi
(x)

p0(x) p0(x) = p(x)

pT(x) T
pT(x) = π(x)



Perturbing data with noise from SDEs

• This SDE is the generalisation of the finite scaling  

• Earlier we were perturbing according to a geometric progression of scales 

• Now, we perturb with noise controlled by the SDE 

• We select manually which SDE to model the process with 

• If we were to select , we would add Gaussian noise  with a scale  that 
grows exponentially with time 

σ0, . . . , σL

dx = etdw dw et



From data to SDE noise

• Let’s ‘imagine’ how the process works 

• We can always start from any image sample  from  

• … and gradually add noise until it is a sample standard Gaussian distribution  

• The point is, can we learn to do the reverse?

x pdata(x)

π(x)



From reverse SDE noise to data

• For any SDE there is a reverse SDE, which corresponds to the reverse trajectories 

 

• That is, for the reverse SDE we need precisely the score function of 

dx = [f(x, t) − g2(t)∇xlog pt(x)]dt + g(t)dw

pt(x)



Learning the reverse SDE

 

• Once we have the neural network approximating the score function 

• We start from the prior distribution  for an initial sample  

• To solve the reverse SDE, that is obtain all  

• So that our final model  approximates well the true data distribution,  

• If we set , it can be shown that  

 

• Assuming perfect score-matching, we can approximate the data distribution as well as we match 
the prior distribution

dx = [f(x, t) − g2(t)∇xlog pt(x)]dt + g(t)dw

π(x) x(T) ∼ π(x)

X(t), ∀t ∈ (T,0]

pθ pθ ≈ p0

λ(t) = g2(t)

KL(p0(x)∥pθ(x))) ≤ 𝔼t∼𝒰(0,T)𝔼x∼pt(x)[ ∇xlog pt(x) − sθ(x)
2

2
]+KL(pT(x)∥π(x)))



Solving the reverse SDE

• Once we have trained the score-matching function, we can solve the reverse SDE 
from the prior  all the way to our data distribution  to generate new data 

• We can use any numerical solver, e.g., the Euler-Maruyama, for a small negative  

 

• With better sampling procedures for SDEs and better architectures, one gets state-
of-the-art in generated samples

π p0

Δt

Δx ← [f(x, t) − g2(t)sθ(x, t)]Δt + g(t) |Δt | zt, zt ∼ 𝒩(0,I)

x ← x + Δx
t ← t + Δt



Time-dependent score-matching

• Train a neural network for score-matching that depends on time 

 

where typically  

• Randomly sample time steps 

• Then sample data from training set 

• Then optimise your score matching approximation

𝔼t∈𝒰(0,T)𝔼pt(x)[λ(t) ∇xlog pt(x) − sθ(x)
2

2]
λ(t) ∝ 1/𝔼[∥∇x(t)log p(x(t) |x(0))∥2

2]



Qualitative examples



Probability flow ODE

• With Langevin MCMC samplers and SDE solvers we can’t get exact log-likelihoods 

• We can convert the SDE to a corresponding ODE without changing the marginal 
distributions , name the probability flow ODE 

 

• Solving the ODE, we can get the exact log-likelihood

{pt(x)}t∈[0,T]

dx = [f(x, t) − g2(t)∇xlog pt(x)]dt



Diffusion Probabilistic Models

• Concurrently, another very similar class of models appeared: diffusion models 

• Diffusion models also define a forward and reverse diffusion process, where  
corresponds to the data distribution, and  a unit-Gaussian distribution

t = 0
t = T

Diffusion probabilistic models, Sohl-Dickstein et al., 2015 
Denoising diffusion probabilistic models, Ho et al., 2020 
Diffusion models beat GANs on image synthesis, 2021 
https://lilianweng.github.io/posts/2021-07-11-diffusion-models/



Forward diffusion process

• In forward diffusion we add small Gaussian noise to our data till it looks like isotropic Gaussian 

 

• We can define the conditional distribution at any time step  w.r.t. step  

 

• For this we use that when merging two Gaussians, we get another Gaussian with variance 

q(xt |xt−1) = 𝒩(xt; 1 − βtxt−1, βtI), q(x1:T |x0) =
T

∏
t=1

q(xt |xt−1)

t t = 0
xt = atxt−1 + 1 − atzt−1 , where zt−1, zt−2, . . . ∼ 𝒩(0,1)

= atat−1xt−2 + 1 − atat−1z̄t−2 , where z̄t−2 merges two Guassians
= . . .
= ātx0 + 1 − ātz̄

q(xt |x0) = 𝒩(xt; ātx0, 1 − ātI)
σ2

1 + σ2
2

https://en.wikipedia.org/wiki/Sum_of_normally_distributed_random_variables


Reverse diffusion process

• The reverse diffusion process can be efficiently parameterised to combine with 
variational inference 

 

• Since we have Gaussian distributions the KL terms can be computed in closed form 

•  does not depend any parameters and it can be dropped 

•  depends on the final decoder output

LVLB = LT + LT−1 + … + L0

where LT = DKL(q(xT |x0)∥pθ(xT))
Lt = DKL(q(xt |xt+1, x0)∥pθ(xt |xt+1)) for 1 ≤ t ≤ T − 1
L0 = − log pθ(x0 |x1)

LT

L0



Parameterising Lt

• By smart parameterisation of the intermediate Gaussians, learning boils down to 
minimising 

Lsimple
t = 𝔼x0,ϵt[ ϵt − ϵθ( ātx0 + 1 − ātϵt, t)

2

2]



Example trajectories

https://lilianweng.github.io/posts/2021-07-11-diffusion-models/



Qualitative results



Take-home message

• Diffusion/score-matching models are both tractable and flexible 

• However, they are still quite slow to sample from compared to GANs 

• The reason is that they require very long chains of time steps up to  

• Great opportunities for learning the data structure effectively and efficiently enough 

• Promising results in modelling inverse problems

T = 1,000


